FEATURES

- 1.2MHz Switching Frequency
- Low VCESAT Switches: 330mV at 1.3A
- High Output Voltage: Up to 40V
- Wide Input Range: 2.4V to 16V
- Inverting Capability
- 5V at 630mA from 3.3V Input
- 12V at 320mA from 5V Input
- −12V at 200mA from 5V Input
- Uses Tiny Surface Mount Components
- Low Shutdown Current: < 1μA
- Low Profile (0.75mm) 10-Lead 3mm × 3mm DFN Package

APPLICATIONS

- Organic LED Power Supply
- Digital Cameras
- White LED Power Supply
- Cellular Phones
- Medical Diagnostic Equipment
- Local ±5V or ±12V Supply
- TFT-LCD Bias Supply
- xDSL Power Supply

DESCRIPTION

The LT®3471 dual switching regulator combines two 42V, 1.3A switches with error amplifiers that can sense to ground providing boost and inverting capability. The low VCESAT bipolar switches enable the device to deliver high current outputs in a small footprint. The LT3471 switches at 1.2MHz, allowing the use of tiny, low cost and low profile inductors and capacitors. High inrush current at start-up is eliminated using the programmable soft-start function, where an external RC sets the current ramp rate. A constant frequency current mode PWM architecture results in low, predictable output noise that is easy to filter.

The LT3471 switches are rated at 42V, making the device ideal for boost converters up to ±40V as well as SEPIC and flyback designs. Each channel can generate 5V at up to 630mA from a 3.3V supply, or 5V at 510mA from four alkaline cells in a SEPIC design. The device can be configured as two boosts, a boost and inverter or two inverters.

The LT3471 is available in a low profile (0.75mm) 10-lead 3mm × 3mm DFN package.
Absolute Maximum Ratings
(Note 1)
- V_{IN} Voltage: $\leq 16V$
- SW1, SW2 Voltage: $-0.4V$ to $42V$
- FB1N, FB1P, FB2N, FB2P Voltage: $12V$ or $V_{\text{IN}} - 1.5V$
- SHDN/SS1, SHDN/SS2 Voltage: $16V$
- V_{REF} Voltage: $\leq 1.5V$
- Maximum Junction Temperature: $\leq 125°C$
- Operating Temperature Range (Note 2): $-40°C$ to $85°C$
- Storage Temperature Range: $-65°C$ to $125°C$

Pin Configuration

Order Information

<table>
<thead>
<tr>
<th>LEAD FREE FINISH</th>
<th>TAPE AND REEL</th>
<th>PART MARKING</th>
<th>PACKAGE DESCRIPTION</th>
<th>TEMPERATURE RANGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>LT3471EDD#PBF</td>
<td>LT3471EDD#TRB</td>
<td>LBHM</td>
<td>10-Lead (3mm x 3mm) Plastic DFN</td>
<td>$-40°C$ to $85°C$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LEAD BASED FINISH</th>
<th>TAPE AND REEL</th>
<th>PART MARKING</th>
<th>PACKAGE DESCRIPTION</th>
<th>TEMPERATURE RANGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>LT3471EDD</td>
<td>LT3471EDD#TR</td>
<td>LBHM</td>
<td>10-Lead (3mm x 3mm) Plastic DFN</td>
<td>$-40°C$ to $85°C$</td>
</tr>
</tbody>
</table>

Consult LTC Marketing for parts specified with wider operating temperature ranges.
For more information on lead free part marking, go to: http://www.linear.com/leadfree/
This product is only offered in trays. For more information go to: http://www.linear.com/packaging/

Electrical Characteristics

The ● denotes specifications which apply over the full operating temperature range, otherwise specifications are $T_A = 25°C$, $V_{\text{IN}} = V_{\text{SHDN}} = 3V$ unless otherwise noted.

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimum Operating Voltage</td>
<td></td>
<td>2.1</td>
<td>2.4</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>Reference Voltage</td>
<td></td>
<td>0.991</td>
<td>1.000</td>
<td>1.009</td>
<td>V</td>
</tr>
<tr>
<td>Reference Voltage Current Limit</td>
<td>(Note 3)</td>
<td>1</td>
<td>1.4</td>
<td>mA</td>
<td></td>
</tr>
<tr>
<td>Reference Voltage Load Regulation</td>
<td>$0\mu A \leq I_{\text{REF}} \leq 100\mu A$ (Note 3)</td>
<td>0.1</td>
<td>0.2</td>
<td>%/100μA</td>
<td></td>
</tr>
<tr>
<td>Reference Voltage Line Regulation</td>
<td>$2.6V \leq V_{\text{IN}} \leq 16V$</td>
<td>0.03</td>
<td>0.08</td>
<td>%/V</td>
<td></td>
</tr>
<tr>
<td>Error Amplifier Offset</td>
<td>Transition from Not Switching to Switching, $V_{\text{FBP}} = V_{\text{FBN}} = 1V$</td>
<td>± 2</td>
<td>± 3</td>
<td>mV</td>
<td></td>
</tr>
<tr>
<td>FB Pin Bias Current</td>
<td>$V_{\text{FB}} = 1V$ (Note 3)</td>
<td>●</td>
<td>60</td>
<td>100</td>
<td>nA</td>
</tr>
<tr>
<td>Quiescent Current</td>
<td>$V_{\text{SHDN}} = 1.8V$, Not Switching</td>
<td>2.5</td>
<td>4</td>
<td>mA</td>
<td></td>
</tr>
<tr>
<td>Quiescent Current in Shutdown</td>
<td>$V_{\text{SHDN}} = 0.3V$, $V_{\text{IN}} = 3V$</td>
<td>0.01</td>
<td>1</td>
<td>μA</td>
<td></td>
</tr>
<tr>
<td>Switching Frequency</td>
<td></td>
<td>1</td>
<td>1.2</td>
<td>1.4</td>
<td>MHz</td>
</tr>
<tr>
<td>Maximum Duty Cycle</td>
<td></td>
<td>90</td>
<td>94</td>
<td>%</td>
<td></td>
</tr>
<tr>
<td>Minimum Duty Cycle</td>
<td></td>
<td>86</td>
<td>15</td>
<td>%</td>
<td></td>
</tr>
<tr>
<td>Switch Current Limit</td>
<td>At Minimum Duty Cycle</td>
<td>1.5</td>
<td>2.05</td>
<td>2.6</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td>At Maximum Duty Cycle (Note 4)</td>
<td>0.9</td>
<td>1.45</td>
<td>2.0</td>
<td>A</td>
</tr>
<tr>
<td>Switch V_{CESAT}</td>
<td>$I_{\text{SW}} = 0.5A$ (Note 5)</td>
<td>150</td>
<td>250</td>
<td>mV</td>
<td></td>
</tr>
<tr>
<td>Switch Leakage Current</td>
<td>$V_{\text{SW}} = 5V$</td>
<td>0.01</td>
<td>1</td>
<td>μA</td>
<td></td>
</tr>
<tr>
<td>SHDN/SS Input Voltage High</td>
<td></td>
<td>1.8</td>
<td></td>
<td>V</td>
<td></td>
</tr>
</tbody>
</table>

Notes:
1. V_{SHDN} and V_{SS1} are common-mode pins.
2. When V_{IN} is a constant DC voltage, the maximum junction temperature must be corrected by $\frac{T_J - T_A}{\theta_{JA}}$ to account for the increased junction temperature due to the input voltage.
3. Where I_{REF} is limited to $0\mu A$ to $100\mu A$, the V_{REF} tolerance is $\pm 1\%$.
4. Switch current limit is $0.95\times$ rated current or $V_{\text{FB}} = V_{\text{FBP}} = V_{\text{FBN}} = 1V$, whichever is less.
5. V_{CESAT} is at $I_{\text{SW}} = 0.5A$ and $V_{\text{SW}} = 5V$.
ELECTRICAL CHARACTERISTICS

The ● denotes specifications which apply over the full operating temperature range, otherwise specifications are $T_A = 25^\circ C$. $V_{IN} = V_{SHDN} = 3V$ unless otherwise noted.

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>SHDN Input Voltage Low</td>
<td>Quiescent Current $\leq 1\mu A$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SHDN Pin Bias Current</td>
<td>$V_{SHDN} = 3V, V_{IN} = 4V$</td>
<td>22</td>
<td>36</td>
<td></td>
<td>μA</td>
</tr>
<tr>
<td></td>
<td>$V_{SHDN} = 0V$</td>
<td>0</td>
<td>0.1</td>
<td></td>
<td>μA</td>
</tr>
</tbody>
</table>

Note 1: Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. Exposure to any Absolute Maximum Rating condition for extended periods may affect device reliability and lifetime.

Note 2: The LT3471E is guaranteed to meet performance specifications from 0°C to 70°C. Specifications over the −40°C to 85°C operating temperature range are assured by design, characterization and correlation with statistical process controls.

Note 3: Current flows out of the pin.

Note 4: See Typical Performance Characteristics for guaranteed current limit vs duty cycle.

Note 5: V_{CESAT} is 100% tested at wafer level only.

TYPICAL PERFORMANCE CHARACTERISTICS

- **Quiescent Current vs Temperature**
- **V_{REF} Voltage vs Temperature**
- **V_{REF} Voltage vs V_{REF} Current**
- **SHDN/SS Current vs SHDN/SS Voltage**
- **Current Limit vs Duty Cycle**
- **Switch Saturation Voltage vs Switch Current**
PIN FUNCTIONS

FB1N (Pin 1): Negative Feedback Pin for Switcher 1. Connect resistive divider tap here. Minimize trace area at FB1N. Set \(V_{\text{OUT}} = V_{\text{FB1P}}(1 + R1/R2) \), or connect to ground for inverting topologies.

FB1P (Pin 2): Positive Feedback Pin for Switcher 1. Connect either to \(V_{\text{REF}} \) or a divided down version of \(V_{\text{REF}} \), or connect to a resistive divider tap for inverting topologies.

VREF (Pin 3): 1.00V Reference Pin. Can supply up to 1mA of current. Do not pull this pin high. Must be locally bypassed with no less than 0.01μF and no more than 1μF. A 0.1μF ceramic capacitor is recommended. Use this pin as the positive feedback reference or connect a resistor divider here for a smaller reference voltage.

FB2P (Pin 4): Same as FB1P but for Switcher 2.

FB2N (Pin 5): Same as FB1N but for Switcher 2.

SW2 (Pin 6): Switch Pin for Switcher 2 (Collector of internal NPN power switch). Connect inductor/diode here and minimize the metal trace area connected to this pin to minimize EMI.

SHDN/SS2 (Pin 7): Shutdown and Soft-Start Pin. Tie to 1.8V or more to enable device. Ground to shut down. Soft-start function is provided when the voltage at this pin is ramped slowly to 1.8V with an external RC circuit.

V\text{IN} (Pin 8): Input Supply. Must be locally bypassed.

SHDN/SS1 (Pin 9): Same as SHDN/SS2 but for Switcher 1. Note: taking either SHDN/SS pin high will enable the part. Each switcher is individually enabled with its respective SHDN/SS pin.

SW1 (Pin 10): Same as SW2 but for Switcher 1.

Exposed Pad (Pin 11): Ground. Connect directly to local ground plane. This ground plane also serves as a heat sink for optimal thermal performance.
OPERATION

The LT3471 uses a constant frequency, current mode control scheme to provide excellent line and load regulation. Refer to the Block Diagram. At the start of each oscillator cycle, the SR latch is set, which turns on the power switch, Q1 (Q2). A voltage proportional to the switch current is added to a stabilizing ramp and the resulting sum is fed into the positive terminal of the PWM comparator A2 (A4). When this voltage exceeds the level at the negative input of A2 (A4), the SR latch is reset, turning off the power switch Q1 (Q2). The level at the negative input of A2 (A4) is set by the error amplifier A1 (A3) and is simply an amplified version of the difference between the negative feedback voltage and the positive feedback voltage, usually tied to the reference voltage V_{REG}. In this manner, the error amplifier sets the correct peak current level to keep the output in regulation. If the error amplifier's output increases, more current is delivered to the output. Similarly, if the error decreases, less current is delivered. Each switcher functions independently but they share the same oscillator and thus the switchers are always in phase. Enabling the part is done by taking either SHDN/SS pin above 1.8V. Disabling the part is done by grounding both SHDN/SS pins. The soft-start feature of the LT3471 allows for clean start-up conditions by limiting the amount of voltage rise at the output of comparator A1 and A2, which in turn limits the peak switching current. The soft-start feature for each switcher is enabled by slowly ramping that switcher's SHDN/SS pin, using an RC network, for example. Typical resistor and capacitor values are 0.33μF and 4.7k, allowing for a start-up time on the order of milliseconds. The LT3471 has a current limit circuit not shown in the Block Diagram. The switch current is constantly monitored and not allowed to exceed the maximum switch current (typically 1.6A). If the switch...
current reaches this value, the SR latch is reset regardless of the state of the comparator A2 (A4). Also not shown in the Block Diagram is the thermal shutdown circuit. If the temperature of the part exceeds approximately 160°C, both latches are reset regardless of the state of comparators A2 and A4. The current limit and thermal shutdown circuits protect the power switch as well as the external components connected to the LT3471.

Duty Cycle

The typical maximum duty cycle of the LT3471 is 94%. The duty cycle for a given application is given by:

\[
DC = \frac{|V_{OUT}| + |V_D| - |V_{IN}|}{|V_{OUT}| + |V_D| - |V_{CESAT}|}
\]

Where \(V_D\) is the diode forward voltage drop and \(V_{CESAT}\) is in the worst case 330mV (at 1.3A).

The LT3471 can be used at higher duty cycles, but it must be operated in the discontinuous conduction mode so that the actual duty cycle is reduced.

Setting Output Voltage

Setting the output voltage depends on the topology used. For normal noninverting boost regulator topologies:

\[
V_{OUT} = V_{FB}\left(1 + \frac{R_1}{R_2}\right)
\]

where \(V_{FBN}\) is connected between \(R_1\) and \(R_2\) (see the Typical Applications section for examples).

Select values of \(R_1\) and \(R_2\) according to the following equation:

\[
R_1 = R_2 \left(\frac{V_{OUT}}{V_{REF}} - 1\right)
\]

A good value for \(R_2\) is 15k which sets the current in the resistor divider chain to 1.00V/15k = 67μA.

Switching Frequency and Inductor Selection

The LT3471 switches at 1.2 MHz, allowing for small valued inductors to be used. 4.7μH or 10μH will usually suffice. Choose an inductor that can handle at least 1.4A without saturating, and ensure that the inductor has a low DCR (copper-wire resistance) to minimize \(I^2R\) power losses. Note that in some applications, the current handling requirements of the inductor can be lower, such as in the SEPIC topology where each inductor only carries one half of the total switch current. For better efficiency, use similar valued inductors with a larger volume. Many different sizes and shapes are available from various manufacturers. Choose a core material that has low losses at 1.2 MHz, such as ferrite core.

Table 1. Inductor Manufacturers

<table>
<thead>
<tr>
<th>Manufacturer</th>
<th>Phone</th>
<th>Web Site</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sumida</td>
<td>(847) 956-0666</td>
<td>www.sumida.com</td>
</tr>
<tr>
<td>TDK</td>
<td>(847) 803-6100</td>
<td>www.tdk.com</td>
</tr>
<tr>
<td>Murata</td>
<td>(714) 852-2001</td>
<td>www.murata.com</td>
</tr>
</tbody>
</table>
APPLICATIONS INFORMATION

Soft-Start and Shutdown Features

To shut down the part, ground both SHDN/SS pins. To shut down one switcher but not the other one, ground that switcher’s SHDN/SS pin. The soft-start feature provides a way to limit the inrush current drawn from the supply upon start-up. To use the soft-start feature for either switch, slowly ramp up that switcher’s SHDN/SS pin. The rate of voltage rise at the SHDN/SS pin has reached about 1.1V. The soft-start function will go away once the voltage at the SHDN/SS pin exceeds 1.8V. See the Peak Switch Current vs SHDN/SS Voltage graph in the Typical Performance Characteristics section.

The rate of voltage rise at the SHDN/SS pin can easily be controlled with a simple RC network connected between the control signal and the SHDN/SS pin. Typical values for the RC network are 4.7kΩ and 0.33μF, giving start-up times on the order of milliseconds. This RC time constant can be adjusted to give different start-up times. If different values of resistance are to be used, keep in mind the SHDN/SS Current vs SHDN/SS voltage graph along with the Peak Switch Current vs SHDN/SS Voltage graph, both found in the Typical Performance Characteristics section.

The impedance looking into the SHDN/SS pin depends on whether the SHDN/SS is above or below V_IN. Normally SHDN/SS will not be driven above V_IN, and thus the impedance looks like 100kΩ in series with a diode. If the voltage of the SHDN/SS pin is above V_IN, the impedance looks more like 50kΩ in series with a diode. This 100kΩ or 50kΩ impedance can have a slight effect on the start-up time if you choose the R in the RC soft-start network too large. Another consideration is selecting the soft-start time so that the soft-start feature is dominated by the RC network and not the capacitor on V_REF. (See V_REF voltage reference section of the Applications Information for details.)

The decision to use either low ESR (ceramic) capacitors or the higher ESR (tantalum or OS-CON) capacitors can affect the stability of the overall system. The ESR of any capacitor, along with the capacitance itself, contributes a zero to the system. For the tantalum and OS-CON capacitors, this zero is located at a lower frequency due to the higher value of the ESR, while the zero of a ceramic capacitor is at a much higher frequency and can generally be ignored.

A phase lead zero can be intentionally introduced by placing a capacitor (CPL) in parallel with the resistor (R3) between V_OUT and V_FB as shown in Figure 2. The frequency of the zero is determined by the following equation.

\[f_Z = \frac{1}{2\pi \cdot R3 \cdot C_{PL}} \]
Supply Current of Figure 2 During Start-Up without Soft-Start RC Network

Supply Current of Figure 2 During Start-Up with Soft-Start RC Network

Figure 2. Li-Ion OLED Driver
APPLICATIONS INFORMATION

By choosing the appropriate values for the resistor and capacitor, the zero frequency can be designed to improve the phase margin of the overall converter. The typical target value for the zero frequency is between 35kHz to 55kHz. Figure 3 shows the transient response of the step-up converter from Figure 2 without the phase lead capacitor \(C_{PL} \). Although adequate for many applications, phase margin is not ideal as evidenced by 2-3 “bumps” in both the output voltage and inductor current. A 33pF capacitor for \(C_{PL} \) results in ideal phase margin, which is revealed in Figure 4 as a more damped response and less overshoot.

\[\frac{1 \mu F \cdot 1.00V}{1.0mA} = 1.0ms \]

Choose the RC network such that the soft-start time is longer than this time, or choose a smaller bypass capacitor for the \(V_{REF} \) pin (but always larger than 0.01\(\mu \)F) so that the RC network dominates the soft-starting of the LT3471. The voltage at the \(V_{REF} \) pin can also be divided down and used for one of the feedback pins for the error amplifier. This is especially useful in LED driver applications, where the current through the LEDs is set using the voltage reference across a sense resistor in the LED chain. Using a smaller or divided down reference leads to less wasted power in the sense resistor. See the Typical Applications section for an example of LED driving applications.
APPLICATIONS INFORMATION

DIODE SELECTION

A Schottky diode is recommended for use with the LT3471. For high efficiency, a diode with good thermal characteristics at high currents should be used such as the On Semiconductor MBRM120. This is a 20V diode. Where the switch voltage exceeds 20V, use the MBRM140, a 40V diode. These diodes are rated to handle an average forward current of 1.0A. In applications where the average forward current of the diode is less than 0.5A, use the Philips PMEG 2005, 3005, or 4005 (a 20V, 30V or 40V diode, respectively).

LAYOUT HINTS

The high speed operation of the LT3471 demands careful attention to board layout. You will not get advertised performance with careless layout. Figure 5 shows the recommended component placement.

Compensation—Theory

Like all other current mode switching regulators, the LT3471 needs to be compensated for stable and efficient operation. Two feedback loops are used in the LT3471: a fast current loop which does not require compensation, and a slower voltage loop which does. Standard Bode plot analysis can be used to understand and adjust the voltage feedback loop.

As with any feedback loop, identifying the gain and phase contribution of the various elements in the loop is critical. Figure 6 shows the key equivalent elements of a boost converter. Because of the fast current control loop, the power stage of the IC, inductor and diode have been replaced by the equivalent transconductance amplifier g_{mp}. g_{mp} acts as a current source where the output current is proportional to the V_C voltage. Note that the maximum output current of g_{mp} is finite due to the current limit in the IC.

Figure 5. Suggested Layout Showing a Boost on SW1 and an Inverter on SW2. Note the Separate Ground Returns for All High Current Paths (Using a Multilayer Board)

Figure 6. Boost Converter Equivalent Model
From Figure 6, the DC gain, poles and zeroes can be calculated as follows:

Output Pole: \(P_1 = \frac{2}{2 \cdot \pi \cdot R_L \cdot C_{OUT}} \)

Error Amp Pole: \(P_2 = \frac{1}{2 \cdot \pi \cdot R_O \cdot C_C} \)

Error Amp Zero: \(Z_1 = \frac{1}{2 \cdot \pi \cdot R_C \cdot C_C} \)

DC GAIN: \(A = \frac{V_{REF}}{V_{OUT}} \cdot g_{ma} \cdot R_O \cdot g_{mp} \cdot R_L \cdot \frac{1}{2} \)

ESR Zero: \(Z_2 = \frac{1}{2 \cdot \pi \cdot R_{ESR} \cdot C_{OUT}} \)

RHP Zero: \(Z_3 = \frac{V_{IN}^2 \cdot R_L}{2 \cdot \pi \cdot V_{OUT} \cdot 2 \cdot L} \)

High Frequency Pole: \(P_3 > \frac{f_S}{3} \)

Phase Lead Zero: \(Z_4 = \frac{1}{2 \cdot \pi \cdot R_1 \cdot C_{PL}} \)

Phase Lead Pole: \(P_4 = \frac{1}{2 \cdot \pi \cdot C_{PL} \cdot \frac{R_1 \cdot R_2}{R_1 + R_2}} \)

The Current Mode zero is a right half plane zero which can be an issue in feedback control design, but is manageable with proper external component selection.

Using the circuit of Figure 2 as an example, Table 3 shows the parameters used to generate the Bode plot shown in Figure 7.

Table 3. Bode Plot Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Units</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>(R_L)</td>
<td>20</td>
<td>Ω</td>
<td>Application Specific</td>
</tr>
<tr>
<td>(C_{OUT})</td>
<td>4.7</td>
<td>μF</td>
<td>Application Specific</td>
</tr>
<tr>
<td>(R_{ESR})</td>
<td>10</td>
<td>mΩ</td>
<td>Application Specific</td>
</tr>
<tr>
<td>(R_O)</td>
<td>0.9</td>
<td>MΩ</td>
<td>Not Adjustable</td>
</tr>
<tr>
<td>(C_C)</td>
<td>90</td>
<td>pF</td>
<td>Not Adjustable</td>
</tr>
<tr>
<td>(C_{PL})</td>
<td>33</td>
<td>pF</td>
<td>Adjustable</td>
</tr>
<tr>
<td>(R_C)</td>
<td>55</td>
<td>kΩ</td>
<td>Not Adjustable</td>
</tr>
<tr>
<td>(R_1)</td>
<td>90.9</td>
<td>kΩ</td>
<td>Adjustable</td>
</tr>
<tr>
<td>(R_2)</td>
<td>15</td>
<td>kΩ</td>
<td>Adjustable</td>
</tr>
<tr>
<td>(V_{OUT})</td>
<td>7</td>
<td>V</td>
<td>Application Specific</td>
</tr>
<tr>
<td>(V_{IN})</td>
<td>3.3</td>
<td>V</td>
<td>Application Specific</td>
</tr>
<tr>
<td>(g_{ma})</td>
<td>50</td>
<td>μmho</td>
<td>Not Adjustable</td>
</tr>
<tr>
<td>(g_{mp})</td>
<td>9.3</td>
<td>mho</td>
<td>Not Adjustable</td>
</tr>
<tr>
<td>(L)</td>
<td>2.2</td>
<td>μH</td>
<td>Application Specific</td>
</tr>
<tr>
<td>(f_S)</td>
<td>1.2</td>
<td>MHz</td>
<td>Not Adjustable</td>
</tr>
</tbody>
</table>

From Figure 7, the phase is \(-115°\) when the gain reaches 0dB giving a phase margin of 65°. This is more than adequate. The crossover frequency is 50kHz.

![Figure 7. Bode Plot of 3.3V to 7V Application](image-url)
TYPICAL APPLICATIONS

Li-Ion OLED Driver

C1, C2: X5R OR X7R 6.3V
C3, C4: X5R OR X7R 10V
C5: XR5 OR X7R 16V
C6: OPTIONAL

D1, D2: ON SEMICONDUCTOR MBRM-120
L1: SUMIDA CR43-2R2
L2: SUMIDA CDRH4D18-100
L3: SUMIDA CDRH4D18-150

Li-Ion OLED Driver Efficiency

VOUT = 7V
VOUT = –7V
VIN = 4.2V
VIN = 3.3V
VIN = 2.6V

Efficiency (%) vs. IOUT (mA)
TYPICAL APPLICATIONS

Single Li-Ion Cell to 5V, 12V Boost Converter

C1-C3: X5R OR X7R 6.3V
C4: X5R OR X7R 16V
D1, D2: ON SEMICONDUCTOR MBRM-120

L1: SUMIDA CR43-3R3
L2: SUMIDA CR43-6R8
Li-Ion 20 White LED Driver

C1, C2: X5R OR X7R 6.3V
C3, C4: X5R OR X7R 50V
D1, D2: ON SEMICONDUCTOR MBRM-140
L1, L2: SUMIDA CDRH2D-2R2
Li-Ion or 4-Cell Alkaline to 3.3V and 5V SEPIC

C1, C3, C5: X5R OR X7R 10V
C4, C6: X5R OR X7R 6.3V
D1, D2: ON SEMICONDUCTOR MBRM-120
L1-L4: MURATA LQH43CN100K032

VOUT1: 3.3V
640mA AT VIN = 6.5V
550mA AT VIN = 5V
470mA AT VIN = 4V
410mA AT VIN = 3.3V
340mA AT VIN = 2.6V

VOUT2: 5V
500mA AT VIN = 6.5V
420mA AT VIN = 5V
360mA AT VIN = 4V
300mA AT VIN = 3.3V
250mA AT VIN = 2.6V

PACKAGE DESCRIPTION

DD Package
10-Lead Plastic DFN (3mm × 3mm)
(Reference LTC DWG # 05-08-1698)

RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS

NOTE:
1. DRAWING TO BE MADE A JEDEC PACKAGE OUTLINE M0-229 VARIATION OF (WEED-2).
2. CHECK THE LTC WEBSITE DATA SHEET FOR CURRENT STATUS OF VARIATION ASSIGNMENT
3. DRAWING NOT TO SCALE
4. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.15mm ON ANY SIDE
5. EXPOSED PAD SHALL BE SOLDER PLATED
6. SHADED AREA IS ONLY A REFERENCE FOR PIN 1 LOCATION ON THE TOP AND BOTTOM OF PACKAGE
TYPICAL APPLICATIONS

5V to ±12V Dual Supply Boost/Inverting Converter

RELATED PARTS

<table>
<thead>
<tr>
<th>PART NUMBER</th>
<th>DESCRIPTION</th>
<th>COMMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>LT1611</td>
<td>550mA (I_{SW}), 1.4MHz, High Efficiency Micropower Inverting DC/DC Converter</td>
<td>V_{IN}: 1.1V to 10V, V_{OUT(MAX)} = −34V, I_{O} = 3mA, I_{SD} < 1μA, ThinSOT Package</td>
</tr>
<tr>
<td>LT1613</td>
<td>550mA (I_{SW}), 1.4MHz, High Efficiency Step-Up DC/DC Converter</td>
<td>V_{IN}: 0.9V to 10V, V_{OUT(MAX)} = 34V, I_{O} = 3mA, I_{SD} < 1μA, ThinSOT Package</td>
</tr>
<tr>
<td>LT1614</td>
<td>750mA (I_{SW}), 600kHz, High Efficiency Micropower Inverting DC/DC Converter</td>
<td>V_{IN}: 1V to 12V, V_{OUT(MAX)} = −24V, I_{O} = 1mA, I_{SD} < 10μA, MS8, S8 Packages</td>
</tr>
<tr>
<td>LT1615/LT1615-1</td>
<td>300mA/80mA (I_{SW}), High Efficiency Step-Up DC/DC Converters</td>
<td>V_{IN} = 1V to 15V, V_{OUT(MAX)} = 34V, I_{O} = 20μA, I_{SD} < 1μA, ThinSOT Package</td>
</tr>
<tr>
<td>LT1617/LT1617-1</td>
<td>350mA/100mA (I_{SW}), High Efficiency Micropower Inverting DC/DC Converters</td>
<td>V_{IN} = 1.2V to 15V, V_{OUT(MAX)} = −34V, I_{O} = 20μA, I_{SD} < 1μA, ThinSOT Package</td>
</tr>
<tr>
<td>LT1930/LT1930A</td>
<td>1A (I_{SW}), 1.2MHz/2.2MHz, High Efficiency Step-Up DC/DC Converters</td>
<td>V_{IN}: 2.6V to 16V, V_{OUT(MAX)} = 34V, I_{O} = 4.2mA/5.5mA, I_{SD} < 1μA, ThinSOT Package</td>
</tr>
<tr>
<td>LT1931/LT1931A</td>
<td>1A (I_{SW}), 1.2MHz/2.2MHz High Efficiency Micropower Inverting DC/DC Converters</td>
<td>V_{IN} = 2.6V to 16V, V_{OUT(MAX)} = −34V, I_{O} = 5.8mA, I_{SD} < 1μA, ThinSOT Package</td>
</tr>
<tr>
<td>LT1943 (Quad)</td>
<td>Quad Boost, 2.6A Buck, 2.6A Boost, 0.3A Boost, 0.4A Inverter 1.2MHz TFT DC/DC Converter</td>
<td>V_{IN} = 4.5V to 22V, V_{OUT(MAX)} = 40V, I_{O} = 10μA, I_{SD} < 35μA, TSSOP28E Package</td>
</tr>
<tr>
<td>LT1945 (Dual)</td>
<td>Dual Output, Boost/Inverter, 350mA (I_{SW}), Constant Off-Time, High Efficiency Step-Up DC/DC Converter</td>
<td>V_{IN} = 1.2V to 15V, V_{OUT(MAX)} = ±34V, I_{O} = 40μA, I_{SD} < 1μA, 10-Lead MS Package</td>
</tr>
<tr>
<td>LT1946/LT1946A</td>
<td>1.5A (I_{SW}), 1.2MHz/2.7MHz, High Efficiency Step-Up DC/DC Converters</td>
<td>V_{IN}: 2.45V to 16V, V_{OUT(MAX)} = 34V, I_{O} = 3.2mA, I_{SD} < 1μA, MS8 Package</td>
</tr>
<tr>
<td>LT3436</td>
<td>3A (I_{SW}), 1MHz, 34V Step-Up DC/DC Converter</td>
<td>V_{IN}: 3V to 25V, V_{OUT(MAX)} = 34V, I_{O} = 0.9mA, I_{SD} < 6μA, TSSOP16E Package</td>
</tr>
<tr>
<td>LT3462/LT3462A</td>
<td>300mA (I_{SW}), 1.2MHz/2.7MHz, High Efficiency Inverting DC/DC Converters with Integrated Schottkys</td>
<td>V_{IN} = 2.5V to 16V, V_{OUT(MAX)} = −38V, I_{O} = 2.9mA, I_{SD} < 1μA, ThinSOT Package</td>
</tr>
<tr>
<td>LT3463/LT3463A</td>
<td>Dual Output, Boost/Inverter, 250mA (I_{SW}), Constant Off-Time, High Efficiency Step-Up DC/DC Converters with Integrated Schottkys</td>
<td>V_{IN} = 2.3V to 15V, V_{OUT(MAX)} = ±40V, I_{O} = 40μA, I_{SD} < 1μA, DFN Package</td>
</tr>
<tr>
<td>LT3464</td>
<td>85mA (I_{SW}), High Efficiency Step-Up DC/DC Converter with Integrated Schottky and PNP Disconnect</td>
<td>V_{IN} = 2.3V to 10V, V_{OUT(MAX)} = 34V, I_{O} = 25μA, I_{SD} < 1μA, ThinSOT Package</td>
</tr>
</tbody>
</table>