Micropower Synchronous Buck-Boost DC/DC Converter with Automatic Burst Mode Operation

FEATURES
- Regulated Output with Input Voltages Above, Below, or Equal to the Output
- Single Inductor, No Schottky Diodes Required
- Manual or Programmable Automatic Burst Mode Operation
- Programmable Average Input Current Limit
- Up to 1.2A Continuous Output Current from a Single Lithium-Ion Cell
- High Efficiency: Up to 95%
- Output Disconnect in Shutdown
- 2.4V to 5.5V Input Range
- 2.4V to 5.25V Output Range
- 35µA Quiescent Current in Burst Mode Operation
- Programmable Frequency from 300kHz to 2MHz
- <1µA Shutdown Current
- Small, Thermally Enhanced 12-Lead (4mm × 3mm) DFN Package

APPLICATIONS
- PDA/S’MART’ Phones
- Handheld Computers
- MP3 Players
- Handheld Instruments
- Digital Cameras
- Wireless Handsets
- USB Peripherals

DESCRIPTION

The **LTC®3442** is a highly efficient, fixed frequency, buck-boost DC/DC converter, which operates from input voltages above, below, and equal to the output voltage. The topology incorporated in the IC provides a continuous transfer function through all operating modes, making the product ideal for a single lithium-ion or multicell alkaline applications where the output voltage is within the battery voltage range.

The device includes two 0.10Ω N-channel MOSFET switches and two 0.10Ω P-channel switches. Operating frequency and average input current limit can each be programmed with an external resistor. Quiescent current is only 35µA in Burst Mode operation, maximizing battery life in portable applications. Automatic Burst Mode operation allows the user to program the load current for Burst Mode operation, or to control it manually.

Other features include 1µA shutdown current, programmable soft-start, peak current limit and thermal shutdown. The **LTC3442** is available in a low profile, thermally enhanced 12-lead (4mm × 3mm × 0.75mm) DFN package.

For more information visit www.linear.com/LTC3442
Absolute Maximum Ratings

(Notes 1, 4)

- V_{IN}, V_{OUT} Voltage: -0.3 to $6V$
- SW1, SW2 Voltage: DC -0.3 to $6V$
- Pulsed $<100\text{ns}$: -0.3 to $7V$
- SHDN/SS, BURST Voltage: -0.3 to $6V$
- R_{LIM}: V_{IN}
- Operating Temperature (Note 2): $-40\degree C$ to $85\degree C$
- Maximum Junction Temperature (Note 4): $125\degree C$
- Storage Temperature Range: $-65\degree C$ to $125\degree C$

Pin Configuration

![TOP VIEW](image)

Order Information

<table>
<thead>
<tr>
<th>Lead Free Finish</th>
<th>Tape and Reel</th>
<th>Part Marking</th>
<th>Package Description</th>
<th>Temperature Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>LTC3442EDE#PBF</td>
<td>LTC3442EDE#TRPBF</td>
<td>3442</td>
<td>12-Lead (4mm × 3mm) Plastic DFN</td>
<td>$-40\degree C$ to $85\degree C$</td>
</tr>
</tbody>
</table>

Consult LTC Marketing for parts specified with wider operating temperature ranges.

For more information on lead free part marking, go to: http://www.linear.com/leadfree/

For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/

Electrical Characteristics

The \bullet denotes the specifications which apply over the full operating temperature range, otherwise specifications are at $T_A = 25\degree C$. $V_{IN} = V_{OUT} = 3.6V$, $R_T = 64.9k$, unless otherwise noted (Note 2).

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Conditions</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input Start-Up Voltage</td>
<td></td>
<td>2.3</td>
<td>2.4</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>Output Voltage Adjust Range</td>
<td></td>
<td>2.4</td>
<td>5.25</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>Feedback Voltage</td>
<td></td>
<td>1.19</td>
<td>1.22</td>
<td>1.25</td>
<td>V</td>
</tr>
<tr>
<td>Feedback Input Current $V_{FB} = 1.22V$</td>
<td></td>
<td>1</td>
<td>50</td>
<td>nA</td>
<td></td>
</tr>
<tr>
<td>Quiescent Current – Burst Mode Operation</td>
<td>$V_{FB} = 1.22V$, BURST = 0V (Note 3)</td>
<td>35</td>
<td>60</td>
<td>μA</td>
<td></td>
</tr>
<tr>
<td>Quiescent Current – Shutdown</td>
<td>$SHDN = 0V$, $V_{OUT} = 0V$, Not Including Switch Leakage</td>
<td>0.1</td>
<td>1</td>
<td>μA</td>
<td></td>
</tr>
<tr>
<td>Quiescent Current – Active</td>
<td>$BURST = V_{IN}$ (Note 3)</td>
<td>600</td>
<td>1100</td>
<td>μA</td>
<td></td>
</tr>
<tr>
<td>NMOS Switch Leakage</td>
<td>Switches B and C</td>
<td>0.1</td>
<td>2</td>
<td>μA</td>
<td></td>
</tr>
<tr>
<td>PMOS Switch Leakage</td>
<td>Switches A and D</td>
<td>0.1</td>
<td>3</td>
<td>μA</td>
<td></td>
</tr>
<tr>
<td>NMOS Switch On Resistance</td>
<td>Switches B and C</td>
<td>0.10</td>
<td>Ω</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PMOS Switch On Resistance</td>
<td>Switches A and D</td>
<td>0.10</td>
<td>Ω</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Input Current Limit</td>
<td></td>
<td>2</td>
<td>3</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>Reverse Current Limit</td>
<td></td>
<td>0.5</td>
<td>A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Burst Mode Operation Current Limit</td>
<td></td>
<td>0.9</td>
<td>A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Max Duty Cycle</td>
<td>Boost (% Switch C On)</td>
<td>70</td>
<td>88</td>
<td>%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Buck (% Switch A In)</td>
<td>100</td>
<td></td>
<td>%</td>
<td></td>
</tr>
<tr>
<td>Min Duty Cycle</td>
<td></td>
<td>0</td>
<td>%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Frequency Accuracy</td>
<td></td>
<td>570</td>
<td>670</td>
<td>770</td>
<td>kHz</td>
</tr>
<tr>
<td>Error Amp A_{VOL}</td>
<td></td>
<td>90</td>
<td>dB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Error Amp Source Current</td>
<td>$BURST > 1.25V$</td>
<td>11</td>
<td>μA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
ELECTRICAL CHARACTERISTICS

The ● denotes the specifications which apply over the full operating temperature range, otherwise specifications are at TA = 25°C. VIN = VOUT = 3.6V, RT = 64.9k, unless otherwise noted (Note 2).

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Error Amp Sink Current</td>
<td>BURST > 1.25V</td>
<td>300</td>
<td>µA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Burst Threshold (Falling)</td>
<td></td>
<td>0.88</td>
<td>V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Burst Threshold (Rising)</td>
<td></td>
<td>1.12</td>
<td>V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Burst Current Ratio</td>
<td>Ratio of IOUT to IBURST</td>
<td>20,000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Input Current Ratio</td>
<td>Ratio of IIN to IRLIM, IIN = 0.5A</td>
<td>70,000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R_LIM Threshold</td>
<td></td>
<td>0.95</td>
<td>V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SHDN/SS Threshold</td>
<td>When IC Is Enabled</td>
<td>0.4</td>
<td>V</td>
<td>1.4</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td>When EA Is at Max Boost Duty Cycle</td>
<td>2.2</td>
<td></td>
<td>2.4</td>
<td>V</td>
</tr>
<tr>
<td>SHDN/SS Input Current</td>
<td>VSNDN = 5.5V</td>
<td>0.01</td>
<td>µA</td>
<td>1</td>
<td>µA</td>
</tr>
</tbody>
</table>

Note 1: Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. Exposure to any Absolute Maximum Rating condition for extended periods may affect device reliability and lifetime.

Note 2: The LTC3442E is guaranteed to meet performance specifications from 0°C to 85°C. Specifications over the –40°C to 85°C operating temperature range are assured by design, characterization and correlation with statistical process controls.

Note 3: Current measurements are performed when the outputs are not switching.

Note 4: This IC includes overtemperature protection that is intended to protect the device during momentary overload conditions. Junction temperature will exceed 125°C when overtemperature protection is active. Continuous operation above the specified maximum operating junction temperature may result in device degradation or failure.

TYPICAL PERFORMANCE CHARACTERISTICS (TA = 25°C unless otherwise specified).

Efficiency vs Load

Efficiency and Power Loss vs Load

Efficiency vs Frequency

For more information www.linear.com/LTC3442
TYPICAL PERFORMANCE CHARACTERISTICS \((T_A = 25°C \text{ unless otherwise specified}). \)

- **Input Current Mirror Linearity**
 - Formula: \(V_{IN} = 3.6V, V_{OUT} = 3.3V, R_{LIM} = 133k \)
 - Graph showing the relationship between \(R_{LIM} \) voltage and input current.

- **Quiescent Current vs \(V_{IN} \) (Fixed Frequency Mode)**
 - Graph showing quiescent current vs \(V_{IN} \) at different frequencies: 0.5 MHz, 1 MHz, 1.5 MHz, 2 MHz.

- **Burst Mode Quiescent Current vs \(V_{IN} \)**
 - Graph showing burst mode quiescent current vs \(V_{IN} \).

- **Peak Current Clamp vs \(V_{IN} \)**
 - Graph showing peak current clamp vs \(V_{IN} \).

- **Average Input Current Limit vs \(V_{IN} \) (Normalized)**
 - Graph showing average input current limit vs \(V_{IN} \) normalized.

- **Average Input Current Limit vs Frequency (Normalized)**
 - Graph showing average input current limit vs frequency (normalized).

- **Automatic Burst Mode Threshold vs \(R_{BURST} \)**
 - Graph showing automatic burst mode threshold vs \(R_{BURST} \).

- **Minimum Start Voltage vs Temperature**
 - Graph showing minimum start voltage vs temperature.

- **Average Input Current Limit vs Temperature (Normalized)**
 - Graph showing average input current limit vs temperature (normalized).

For more information visit www.linear.com/LTC3442
TYPICAL PERFORMANCE CHARACTERISTICS

(T_A = 25°C unless otherwise specified).

Frequency Change vs Temperature (Normalized)

Feedback Voltage vs Temperature (Normalized)

Switch Pins Before Entering Boost Mode

Switch Pins in Buck-Boost Mode

Switch Pins Entering Buck-Boost Mode

Output Ripple at 1A Load

Load Transient Response in Fixed Frequency Mode, No Load to 1A

Load Transient Response in Auto Burst Mode Operation, No Load to 1A

Burst Mode Operation

For more information www.linear.com/LTC3442
TYPICAL PERFORMANCE CHARACTERISTICS

Transition from Burst Mode Operation to Fixed Frequency Mode

Pulsed Overload Using Average Input Current Limit

PIN FUNCTIONS

SHDN/SS (Pin 1): Combined Soft-Start and Shutdown. Applied voltage <0.4V shuts down the IC. Tie to >1.4V to enable the IC and >2.4V to ensure the error amp is not clamped from soft-start. For Burst Mode operation, this pin must be pulled up to within 0.5V of VIN. An RC network from the shutdown command signal to this pin will provide a soft-start function by limiting the rise time of the VC pin.

RT (Pin 2): Programs the Frequency of the Internal Oscillator. Place a resistor from this pin to ground. See the Applications Information section for component value selection.

SGND (Pin 3): Signal Ground for the IC.

SW1 (Pin 4): Switch Pin Where Internal Switches A and B Are Connected. Connect inductor from SW1 to SW2. An optional Schottky diode can be connected from SW1 to ground for a moderate efficiency improvement. Minimize trace length to reduce EMI.

PGND (Pin 5, 13): Power Ground for the Internal NMOS Power Switches. The exposed pad must be soldered to PCB ground to provide both electrical contact and a good thermal contact to the PCB.

SW2 (Pin 6): Switch Pin Where Internal Switches C and D Are Connected. An optional Schottky diode can be connected from SW2 to VOUT for a moderate efficiency improvement. Minimize trace length to reduce EMI.

BURST (Pin 7): Used to Set the Automatic Burst Mode Operation Threshold. Place a resistor and capacitor in parallel from this pin to ground. See the Applications Information section for component value selection. For manual control, ground the pin to force Burst Mode operation, connect to VOUT to force fixed frequency mode.

VOUT (Pin 8): Output of the Synchronous Rectifier. A filter capacitor is placed from VOUT to GND. A ceramic bypass capacitor is recommended as close to the VOUT and GND pins as possible.

VIN (Pin 9): Input Supply Pin. Internal VCC for the IC. A 10µF ceramic capacitor is recommended as close to VIN and SGND as possible.

RLIM (Pin 10): Sets the Average Input Current Limit Threshold. Place a resistor and capacitor in parallel from this pin to ground. See the Applications Information section for component value selection.

VC (Pin 11): Error Amp Output. A frequency compensation network is connected from this pin to FB to compensate the loop. During Burst Mode operation, VC is internally connected to a hold circuit.

FB (Pin 12): Feedback Pin. Connect resistor divider tap here. The output voltage can be adjusted from 2.4V to 5.25V. The feedback reference voltage is typically 1.22V.

For more information www.linear.com/LTC3442
For more information: www.linear.com/LTC3442
OPERATION

The LTC3442 provides high efficiency, low noise power for applications such as portable instrumentation. The LTC proprietary topology allows input voltages above, below or equal to the output voltage by properly phasing the output switches. The error amp output voltage on VC determines the output duty cycle of the switches. Since VC is a filtered signal, it provides rejection of frequencies from well below the switching frequency. The low R_DS(ON), low gate charge synchronous switches provide high frequency pulse width modulation control at high efficiency. Schottky diodes across the synchronous switch D and synchronous switch B are not required, but provide a lower voltage drop during the break-before-make time (typically 15ns). Schottky diodes will improve peak efficiency by typically 1% to 2%. High efficiency is achieved at light loads when Burst Mode operation is entered and the IC’s quiescent current drops to a low 35µA.

LOW NOISE FIXED FREQUENCY OPERATION

Oscillator

The frequency of operation is programmed by an external resistor from RT to ground, according to the following equation:

\[f(\text{kHz}) = \frac{43,300}{R_T(\text{k}\Omega)} \]

Error Amp

The error amplifier is a voltage mode amplifier. The loop compensation components are configured around the amplifier (from FB to VC) to obtain stability of the converter. For improved bandwidth, an additional RC feedforward network can be placed across the upper feedback divider resistor. The voltage on SHDN/SS clamps the error amp output, VC, to provide a soft-start function.

Internal Current Limit

There are three different current limit circuits in the LTC3442. Two have internally fixed thresholds which vary inversely with VIN, the third is externally programmable, and does not vary with input voltage.

The first circuit is a high speed peak current limit amplifier that will shut off switch A if the current exceeds 5A typical. The delay to output of this amplifier is typically 50ns. A second amplifier will begin to source current into the FB pin to drop the output voltage once the peak input current exceeds 3A typical. This method provides a closed loop means of clamping the input current. During conditions where VOUT is near ground, such as during a short-circuit or during startup, this threshold is cut in half, providing a foldback feature. For this current limit feature to be most effective, the Thevenin resistance from FB to ground should be greater than 100kΩ.

Externally Programmable Current Limit

The third current limit circuit is programmed by an external resistor on RLIM. This circuit works by mirroring the input current in switch A, averaging it by means of the external RC network on RLIM, and comparing the resulting voltage with an internal reference. If the voltage on RLIM starts to exceed 0.95V, a Gm amplifier will clamp VC, lowering VOUT to maintain control of the input current. This allows the user to program a maximum average input current, for applications such as USB, where the current draw from the bus must be limited to 500mA. The resistor and capacitor values are determined by the following equations:

\[R_{\text{LIM}}(\text{k}\Omega) = \frac{70 \cdot \left(0.86 + \frac{2 \cdot V_{\text{IN}} - V_{\text{OUT}}}{40} \right)}{I_{\text{IN}}(\text{AMPS})} \]

\[C_{\text{LIM}}(\mu\text{F}) \geq \frac{0.1}{R_{\text{LIM}}(\text{k}\Omega)} \]

The programmable current limit feature is disabled in Burst Mode operation.
OPERATION

Reverse Current Limit
During fixed frequency operation, the LTC3442 operates in forced continuous conduction mode. The reverse current limit amplifier monitors the inductor current from the output through switch D. Once the negative inductor current exceeds 500mA typical, the IC will shut off switch D.

Four-Switch Control
Figure 1 shows a simplified diagram of how the four internal switches are connected to the inductor, V_{IN}, V_{OUT} and GND. Figure 2 shows the regions of operation for the LTC3442 as a function of the internal control voltage, V_{CI}. Depending on the control voltage, the IC will operate in either buck, buck/boost or boost mode. The V_{CI} voltage is a level shifted voltage from the output of the error amp (V_{C}) (see Figure 5). The four power switches are properly phased so the transfer between operating modes is continuous, smooth and transparent to the user. When V_{IN} approaches V_{OUT} the buck/boost region is reached where

![Figure 1. Simplified Diagram of Output Switches](image)

the conduction time of the four switch region is typically 150ns. Referring to Figures 1 and 2, the various regions of operation will now be described.

Buck Region ($V_{\text{IN}} > V_{\text{OUT}}$)
Switch D is always on and switch C is always off during this mode. When the internal control voltage, V_{CI}, is above voltage V_1, output A begins to switch. During the off-time of switch A, synchronous switch B turns on for the remainder of the time. Switches A and B will alternate similar to a typical synchronous buck regulator. As the control voltage increases, the duty cycle of switch A increases until the maximum duty cycle of the converter in buck mode reaches $D_{\text{MAX_BUCK}}$, given by:

$$D_{\text{MAX_BUCK}} = 100 - D_{\text{4SW}}\%$$

where D_{4SW} = duty cycle % of the four switch range.

$$D_{\text{4SW}} = \left(\frac{150\text{ns} \times f}{\text{Hz}}\right) \times 100\%$$

where f = operating frequency, Hz.

Beyond this point the “four switch,” or buck/boost region is reached.

Buck/Boost or Four Switch ($V_{\text{IN}} \sim V_{\text{OUT}}$)
When the internal control voltage, V_{CI}, is above voltage V_2, switch pair AD remain on for duty cycle $D_{\text{MAX_BUCK}}$, and the switch pair AC begins to phase in. As switch pair AC phases in, switch pair BD phases out accordingly. When the V_{CI} voltage reaches the edge of the buck/boost range, at voltage V_3, the AC switch pair completely phase out the BD pair, and the boost phase begins at duty cycle D_{4SW}. The input voltage, V_{IN}, where the four switch region begins is given by:

$$V_{\text{IN}} = \frac{V_{\text{OUT}}}{1 - (150\text{ns} \times f)}$$

The point at which the four switch region ends is given by:

$$V_{\text{IN}} = V_{\text{OUT}}(1 - D) = V_{\text{OUT}}(1 - 150\text{ns} \times f)$$

![Figure 2. Switch Control vs Internal Control Voltage, V_{CI}](image)
OPERATION

Boost Region (VIN < VOUT)

Switch A is always on and switch B is always off during this mode. When the internal control voltage, VCI, is above voltage V3, switch pair CD will alternately switch to provide a boosted output voltage. This operation is typical to a synchronous boost regulator. The maximum duty cycle of the converter is limited to 88% typical and is reached when VCI is above V4.

BURST MODE OPERATION

Burst Mode operation occurs when the IC delivers energy to the output until it is regulated and then goes into a sleep mode where the outputs are off and the IC is consuming only 35µA of quiescent current from VIN. In this mode the output ripple has a variable frequency component that depends upon load current, and will typically be about 2% peak-to-peak. Burst Mode operation ripple can be reduced slightly by using more output capacitance (47µF or greater). Another method of reducing Burst Mode operation ripple is to place a small feedforward capacitor across the upper resistor in the VOUT feedback divider network (as in Type III compensation).

During the period where the device is delivering energy to the output, the peak switch current will be equal to 900mA typical and the inductor current will terminate at zero current for each cycle. In this mode the typical maximum average output current is given by:

\[I_{\text{OUT(MAX)}} = 0.2 \cdot \frac{V_{\text{IN}}}{V_{\text{OUT}} + V_{\text{IN}}} \]

Note that the peak efficiency during Burst Mode operation is less than the peak efficiency during fixed frequency operation because the part enters full-time 4-switch mode (when servicing the output) with discontinuous inductor current as illustrated in Figures 3 and 4. During Burst Mode operation, the control loop is nonlinear and cannot utilize the control voltage from the error amp to determine the control mode, therefore full-time 4-switch mode is required to maintain the buck/boost function. The efficiency below 1mA becomes dominated primarily by the quiescent current. The Burst Mode operation efficiency is given by:

\[\text{EFFICIENCY} = \frac{n \cdot I_{\text{LOAD}}}{35 \mu A + I_{\text{LOAD}}} \]

where n is typically 82% during Burst Mode operation.

Automatic Burst Mode Operation Control

Burst Mode operation can be automatic or manually controlled with a single pin. In automatic mode, the IC will enter Burst Mode operation at light load and return to fixed frequency operation at heavier loads. The load current at which the mode transition occurs is programmed using a single external resistor from the BURST pin to ground, according to the following equations:

Enter Burst Mode: \[I = \frac{17.6}{R_{\text{BURST}}} \]

Leave Burst Mode: \[I = \frac{22.4}{R_{\text{BURST}}} \]

where \(R_{\text{BURST}} \) is in kΩ and \(I_{\text{BURST}} \) is the load transition current in Amps. Do not use values of \(R_{\text{BURST}} \) greater than 250k.
OPERATION

For automatic operation, a filter capacitor should also be connected from BURST to ground to prevent ripple on BURST from causing the IC to oscillate in and out of Burst Mode operation. The equation for the minimum capacitor value is:

\[C_{BURST(MIN)} \geq \frac{C_{OUT} \cdot V_{OUT}}{60,000} \]

where \(C_{BURST(MIN)} \) and \(C_{OUT} \) are in \(\mu \text{F} \).

In the event that a load transient causes the feedback pin to drop by more than 4% from the regulation value while in Burst Mode operation, the IC will immediately switch to fixed frequency mode and an internal pull-up will be momentarily applied to BURST, rapidly charging the BURST cap. This prevents the IC from immediately re-entering Burst Mode operation once the output achieves regulation.

Manual Burst Mode Operation

For manual control of Burst Mode operation, the RC network connected to BURST can be eliminated. To force fixed frequency mode, BURST should be connected to \(V_{OUT} \). To force Burst Mode operation, BURST should be grounded. When commanding Burst Mode operation manually, the circuit connected to BURST should be able to sink up to 2mA.

For optimum transient response with large dynamic loads, the operating mode should be controlled manually by the host. By commanding fixed frequency operation prior to a sudden increase in load, output voltage droop can be minimized. Note that if the load current applied during forced Burst Mode operation (BURST pin is grounded) exceeds the current that can be supplied, the output voltage will start to droop and the IC will automatically come out of Burst Mode operation and enter fixed frequency mode, raising \(V_{OUT} \). Once regulation is achieved, the IC will then enter Burst Mode operation once again, and the cycle will repeat, resulting in about 4% output ripple. Note that Burst Mode operation is inhibited during soft-start.

Burst Mode Operation to Fixed Frequency Transient Response

In Burst Mode operation, the compensation network is not used and \(V_C \) is disconnected from the error amplifier. During long periods of Burst mode operation, leakage currents in the external components or on the PC board could cause the compensation capacitor to charge (or discharge), which could result in a large output transient when returning to fixed frequency mode of operation, even at the same load current. To prevent this, the LTC3442 incorporates an active clamp circuit that holds the voltage on \(V_C \) at an optimal voltage during Burst Mode operation. This minimizes any output transient when returning to fixed frequency mode operation. For optimum transient response, Type 3 compensation is also recommended to broaden the control loop and roll off past the two pole response of the output LC filter. (See Closing the Feedback Loop.)

Soft-Start

The soft-start function is combined with shutdown. When the SHDN/SS pin is brought above 0.7V typical, the IC is enabled but the EA duty cycle is clamped from \(V_C \). A detailed diagram of this function is shown in Figure 5. The components \(R_{SS} \) and \(C_{SS} \) provide a slow ramping voltage on SHDN/SS to provide a soft-start function. To ensure that \(V_C \) is not being clamped, SHDN/SS must be raised above 2.4V. To enable Burst Mode operation, SHDN/SS must be raised to within 0.5V of \(V_{IN} \).
APPLICATIONS INFORMATION

COMPONENT SELECTION

Figure 6. Recommended Component Placement. Traces Carrying High Current Should Be Short and Wide. Trace Area at FB and VC Pins Are Kept Low. Lead Length to Battery Should Be Kept Short. VOUT and VIN Ceramic Capacitors Close to the IC Pins.

Inductor Selection

The high frequency operation of the LTC3442 allows the use of small surface mount inductors. The inductor ripple current is typically set to 20% to 40% of the maximum inductor current. For a given ripple the inductance terms are given as follows:

\[L_{\text{BOOST}} > \frac{V_{\text{IN(MIN)}} \cdot (V_{\text{OUT}} - V_{\text{IN(MIN)}})}{f \cdot \Delta I_L \cdot V_{\text{OUT}}} \]

\[L_{\text{BUCK}} > \frac{V_{\text{OUT}} \cdot (V_{\text{IN(MAX)}} - V_{\text{OUT}})}{f \cdot \Delta I_L \cdot V_{\text{IN(MAX)}}} \]

where

- \(f \) = operating frequency, Hz
- \(\Delta I_L \) = maximum allowable inductor ripple current, A
- \(V_{\text{IN(MIN)}} \) = minimum input voltage, V
- \(V_{\text{IN(MAX)}} \) = maximum input voltage, V
- \(V_{\text{OUT}} \) = output voltage, V
- \(I_{\text{OUT(MAX)}} \) = maximum output load current
APPLICATIONS INFORMATION

For high efficiency, choose a ferrite inductor with a high frequency core material to reduce core loses. The inductor should have low ESR (equivalent series resistance) to reduce the I^2R losses, and must be able to handle the peak inductor current without saturating. Molded chokes or chip inductors usually do not have enough core to support the peak inductor currents in the 1A to 2A region. To minimize radiated noise, use a shielded inductor. See Table 1 for a suggested list of inductor suppliers.

Output Capacitor Selection

The bulk value of the output filter capacitor is set to reduce the ripple due to charge into the capacitor each cycle. The steady-state ripple due to charge is given by:

$$\% \text{ RIPPLE}_\text{BOOST} = \frac{I_{\text{OUT(MAX)}} \cdot (V_{\text{OUT}} - V_{\text{IN(MIN)}})}{C_{\text{OUT}} \cdot V_{\text{OUT}}^2 \cdot f} \cdot 100$$

$$\% \text{ RIPPLE}_\text{BUCK} = \frac{I_{\text{OUT(MAX)}} \cdot (V_{\text{IN(MAX)}} - V_{\text{OUT}})}{C_{\text{OUT}} \cdot V_{\text{IN(MAX)}} \cdot V_{\text{OUT}} \cdot f} \cdot 100$$

where C_{OUT} = output filter capacitor in Farads and f = switching frequency in Hz.

The output capacitance is usually many times larger than the minimum value in order to handle the transient response requirements of the converter. For a rule of thumb, the ratio of the operating frequency to the unity-gain bandwidth of the converter is the amount the output capacitance will have to increase from the above calculations in order to maintain the desired transient response.

The other component of ripple is due to the ESR (equivalent series resistance) of the output capacitor. Low ESR capacitors should be used to minimize output voltage ripple. For surface mount applications, Taiyo Yuden or TDK ceramic capacitors, AVX TPS series tantalum capacitors or Sanyo POSCAP are recommended. See Table 2 for contact information.

Input Capacitor Selection

Since V_{IN} is the supply voltage for the IC, as well as the input to the power stage of the converter, it is recommended to place at least a 4.7µF, low ESR ceramic bypass capacitor close to the V_{IN} and SGND pins. It is also important to minimize any stray resistance from the converter to the battery or other power source.

Table 1. Inductor Vendor Information

<table>
<thead>
<tr>
<th>SUPPLIER</th>
<th>PHONE</th>
<th>FAX</th>
<th>WEB SITE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coilcraft</td>
<td>(847) 639-6400</td>
<td>(847) 639-1469</td>
<td>www.coilcraft.com</td>
</tr>
<tr>
<td>CoEv Magnetics</td>
<td>(800) 227-7040</td>
<td>(650) 361-2508</td>
<td>www.circuitprotection.com/magnetics.asp</td>
</tr>
<tr>
<td>Murata</td>
<td>(814) 237-1431</td>
<td>(814) 238-0490</td>
<td>www.murata.com</td>
</tr>
<tr>
<td>Sumida</td>
<td>USA: (847) 956-0666</td>
<td>USA: (847) 956-0702</td>
<td>www.sumida.com</td>
</tr>
<tr>
<td></td>
<td>Japan: 81(3) 3607-5111</td>
<td>Japan: 81(3) 3607-5144</td>
<td></td>
</tr>
<tr>
<td>TDK</td>
<td>(847) 803-6100</td>
<td>(847) 803-6296</td>
<td>www.component.tdk.com</td>
</tr>
<tr>
<td>TOKO</td>
<td>(847) 297-0070</td>
<td>(847) 699-7864</td>
<td>www.tokoam.com</td>
</tr>
</tbody>
</table>

Table 2. Capacitor Vendor Information

<table>
<thead>
<tr>
<th>SUPPLIER</th>
<th>PHONE</th>
<th>FAX</th>
<th>WEB SITE</th>
</tr>
</thead>
<tbody>
<tr>
<td>AVX</td>
<td>(803) 448-9411</td>
<td>(803) 448-1943</td>
<td>www.avxcorp.com</td>
</tr>
<tr>
<td>Murata</td>
<td>(814) 237-1431</td>
<td>(814) 238-0490</td>
<td>www.murata.com</td>
</tr>
<tr>
<td>Sanyo</td>
<td>(619) 661-6322</td>
<td>(619) 661-1055</td>
<td>www.sanyovideo.com</td>
</tr>
<tr>
<td>Taiyo Yuden</td>
<td>(408) 573-4150</td>
<td>(408) 573-4159</td>
<td>www.t-yuden.com</td>
</tr>
<tr>
<td>TDK</td>
<td>(847) 803-6100</td>
<td>(847) 803-6296</td>
<td>www.component.tdk.com</td>
</tr>
</tbody>
</table>
APPLICATIONS INFORMATION

Optional Schottky Diodes

The Schottky diodes across the synchronous switches B and D are not required (\(V_{\text{OUT}} < 4.3\)V), but provide a lower drop during the break-before-make time (typically 15ns) improving efficiency. Use a surface mount Schottky diode such as an MBRM120T3 or equivalent. Do not use ordinary rectifier diodes, since the slow recovery times will compromise efficiency. For applications with an output voltage above 4.3V, a Schottky diode is required from SW2 to \(V_{\text{OUT}}\).

Output Voltage < 2.4V

The LTC3442 can operate as a buck converter with output voltages as low as 0.4V. The part is specified at 2.4V minimum to allow operation without the requirement of a Schottky diode. Synchronous switch D is powered from \(V_{\text{OUT}}\) and the \(R_{\text{DS(ON)}}\) will increase at low output voltages, therefore a Schottky diode is required from SW2 to \(V_{\text{OUT}}\) to provide the conduction path to the output. Note that Burst Mode operation is inhibited at output voltages below 1.6V typical.

Output Voltage > 4.3V

A Schottky diode from SW2 to \(V_{\text{OUT}}\) is required for output voltages over 4.3V. The diode must be located as close to the pins as possible in order to reduce the peak voltage on SW2 due to the parasitic lead and trace inductance.

Input Voltage > 4.5V

For applications with input voltages above 4.5V which could exhibit an overload or short-circuit condition, a 2Ω/1nF series snubber is required between SW1 and GND. A Schottky diode from SW1 to \(V_{\text{IN}}\) should also be added as close to the pins as possible. For the higher input voltages, \(V_{\text{IN}}\) bypassing becomes more critical; therefore, a ceramic bypass capacitor as close to the \(V_{\text{IN}}\) and SGND pins as possible is also required.

Operating Frequency Selection

Higher operating frequencies allow the use of a smaller inductor and smaller input and output filter capacitors, thus reducing board area and component height. However, higher operating frequencies also increase the IC’s total quiescent current due to the gate charge of the four switches, as given by:

\[
\begin{align*}
\text{Buck:} & \quad I_q = (0.8 \cdot V_{\text{IN}} \cdot f) \, \text{mA} \\
\text{Boost:} & \quad I_q = [0.4 \cdot (V_{\text{IN}} + V_{\text{OUT}}) \cdot f] \, \text{mA} \\
\text{Buck/Boost:} & \quad I_q = [f \cdot (1.2 \cdot V_{\text{IN}} + 0.4 \cdot V_{\text{OUT}})] \, \text{mA}
\end{align*}
\]

where \(f \) = switching frequency in MHz. Therefore frequency selection is a compromise between the optimal efficiency and the smallest solution size.

Closing the Feedback Loop

The LTC3442 incorporates voltage mode PWM control. The control to output gain varies with operation region (buck, boost, buck/boost), but is usually no greater than 15. The output filter exhibits a double pole response, as given by:

\[
\begin{align*}
\text{Buck Mode:} & \quad f_{\text{FILTER—POLE}} = \frac{1}{2 \cdot \pi \cdot \sqrt{L \cdot C_{\text{OUT}}}} \, \text{Hz} \\
\text{Boost Mode:} & \quad f_{\text{FILTER—POLE}} = \frac{V_{\text{IN}}}{2 \cdot V_{\text{OUT}} \cdot \pi \cdot \sqrt{L \cdot C_{\text{OUT}}}} \, \text{Hz}
\end{align*}
\]

where \(L \) is in henries and \(C_{\text{OUT}} \) is in farads.

The output filter zero is given by:

\[
\text{Buck Mode:} \quad f_{\text{FILTER—ZERO}} = \frac{1}{2 \cdot \pi \cdot R_{\text{ESR}} \cdot C_{\text{OUT}}} \, \text{Hz}
\]

where \(R_{\text{ESR}} \) is the equivalent series resistance of the output capacitor.

A troublesome feature in boost mode is the right-half plane zero (RHP), given by:

\[
\begin{align*}
\text{RHP Zero:} & \quad f_{\text{RHPZ}} = \frac{V_{\text{IN}}^2}{2 \cdot \pi \cdot I_{\text{OUT}} \cdot L \cdot V_{\text{OUT}}} \, \text{Hz}
\end{align*}
\]

The loop gain is typically rolled off before the RHP zero frequency.
APPLICATIONS INFORMATION

A simple Type I compensation network can be incorporated to stabilize the loop, but at a cost of reduced bandwidth and slower transient response. To ensure proper phase margin using Type I compensation, the loop must be crossed over a decade before the LC double pole. The unity-gain frequency of the error amplifier with the Type I compensation is given by:

\[f_{UG} = \frac{1}{2 \pi R_1 C_{P1}} \text{Hz} \]

referring to Figure 7.

Most applications demand an improved transient response to allow a smaller output filter capacitor. To achieve a higher bandwidth, Type III compensation is required, providing two zeros to compensate for the double-pole response of the output filter. Referring to Figure 8, the location of the poles and zeros are given by:

- \[f_{POLE1} = \frac{1}{2 \pi R_1 C_{P1} 32 e^3} \text{Hz} \]
 (which is extremely close to DC)
- \[f_{ZERO1} = \frac{1}{2 \pi R_Z C_{P1}} \text{Hz} \]
- \[f_{ZERO2} = \frac{1}{2 \pi R_1 C_{Z1}} \text{Hz} \]
- \[f_{POLE2} = \frac{1}{2 \pi R_Z C_{P2}} \text{Hz} \]

where resistance is in ohms and capacitance is in Farads.

TYPICAL APPLICATIONS

1MHz Li-Ion to 3.3V at 1.2A Converter with Manual Mode Control (and Peak Current Limit Only)
TYPICAL APPLICATIONS

Multi-Input 3.3V at 600mA Boost Converter for Portable Applications
with Automatic Burst Mode Operation and Average Input Current Limit for USB Powered Devices

High Efficiency Li-Ion Powered Constant Current LED Driver
with Open-LED Protection

LED Driver Efficiency vs LED Current

OPEN LED VOLTAGE LIMIT = (R4 + R5) • 0.95/R4
VLED = 500mA

* NOTE: THE SHDN/SS VOLTAGE MUST BE NO MORE THAN 0.5V BELOW VIN WHEN ENABLED.
TYPICAL APPLICATIONS

High Current LED Driver with Low/High Current Range for Pulsed Applications; LED Current Is 0.5A with 1.5A Pulse

* NOTE: THE SHDN/SS VOLTAGE MUST BE NO MORE THAN 0.5V BELOW VIN WHEN ENABLED.
PACKAGE DESCRIPTION

Please refer to http://www.linear.com/designtools/packaging/ for the most recent package drawings.

DE/UE Package
12-Lead Plastic DFN (4mm × 3mm)
(Reference LTC DWG # 05-08-1695 Rev D)

NOTE:
1. DRAWING PROPOSED TO BE A VARIATION OF VERSION (WGED) IN JEDEC PACKAGE OUTLINE MO-229
2. DRAWING NOT TO SCALE
3. ALL DIMENSIONS ARE IN MILLIMETERS
4. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.15mm ON ANY SIDE
5. EXPOSED PAD SHALL BE SOLDER PLATED
6. SHADED AREA IS ONLY A REFERENCE FOR PIN 1 LOCATION ON THE TOP AND BOTTOM OF PACKAGE

For more information www.linear.com/LTC3442
REVISION HISTORY

(Revision history begins at Rev B)

<table>
<thead>
<tr>
<th>REV</th>
<th>DATE</th>
<th>DESCRIPTION</th>
<th>PAGE NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>05/13</td>
<td>Modified the Absolute Maximum Ratings section and added new Order Information</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Modified the Electrical Characteristics table and Note 2</td>
<td>2, 3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Simplified Block Diagram, update 1V to 0.95V</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Changed Operation section, 1V to 0.7V for soft-start</td>
<td>12</td>
</tr>
</tbody>
</table>
RELATED PARTS

<table>
<thead>
<tr>
<th>PART NUMBER</th>
<th>DESCRIPTION</th>
<th>COMMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>LT1613</td>
<td>550mA (ISW), 1.4MHz, High Efficiency Step-Up DC/DC Converter</td>
<td>V_{IN}: 0.9V to 10V, $V_{OUT(MAX)} = 34V$, $I_Q = 3mA$, $I_{SD} < 1\mu A$, ThinSOT™ Package</td>
</tr>
<tr>
<td>LT1618</td>
<td>1.5A (ISW), 1.25MHz, High Efficiency Step-Up DC/DC Converter</td>
<td>V_{IN}: 1.6V to 18V, $V_{OUT(MAX)} = 35V$, $I_Q = 1.8mA$, $I_{SD} < 1\mu A$, MS10 Package</td>
</tr>
<tr>
<td>LT1930/LT1930A</td>
<td>1A (ISW), 1.2MHz/2.2MHz, High Efficiency Step-Up DC/DC Converter</td>
<td>V_{IN}: 2.6V to 16V, $V_{OUT(MAX)} = 34V$, $I_Q = 4.2mA/5.5mA$, $I_{SD} < 1\mu A$, ThinSOT Package</td>
</tr>
<tr>
<td>LT1935</td>
<td>2A (ISW), 1.2MHz, 38V Step-Up DC/DC Converter</td>
<td>V_{IN}: 2.3V to 16V, $V_{OUT(MAX)} = 38V$, $I_Q = 3mA$, $S_D < 1\mu A$, ThinSOT Package</td>
</tr>
<tr>
<td>LT1945/LT1946A</td>
<td>1.5A (ISW), 1.2MHz/2.7MHz, High Efficiency Step-Up DC/DC Converter</td>
<td>V_{IN}: 2.45V to 16V, $V_{OUT(MAX)} = 34V$, $I_Q = 3.2mA$, $I_{SD} < 1\mu A$, MS8 Package</td>
</tr>
<tr>
<td>LT1961</td>
<td>1.5A (ISW), 1.25MHz, High Efficiency Step-Up DC/DC Converter</td>
<td>V_{IN}: 3V to 25V, $V_{OUT(MAX)} = 35V$, $I_Q = 0.9mA$, $I_{SD} = 6\mu A$, MS8E Package</td>
</tr>
<tr>
<td>LTC3400/LTC3400B</td>
<td>600mA (ISW), 1.2MHz Synchronous Step-Up DC/DC Converter</td>
<td>V_{IN}: 0.85V to 5V, $V_{OUT(MAX)} = 5V$, $I_Q = 19\mu A/300\mu A$, $I_{SD} < 1\mu A$, ThinSOT Package</td>
</tr>
<tr>
<td>LTC3401/LTC3402</td>
<td>1A/2A (ISW), 3MHz Synchronous Step-Up DC/DC Converter</td>
<td>V_{IN}: 0.5V to 5V, $V_{OUT(MAX)} = 6V$, $I_Q = 38\mu A$, $I_{SD} < 1\mu A$, MS Package</td>
</tr>
<tr>
<td>LTC3405/LTC3405A</td>
<td>300mA (IOUT), 1.5MHz Synchronous Step-Down DC/DC Converter</td>
<td>V_{IN}: 2.7V to 6V, $V_{OUT(MIN)} = 0.8V$, $I_Q = 20\mu A$, $I_{SD} ≤ 1\mu A$, MS10 Package</td>
</tr>
<tr>
<td>LTC3406/LTC3406B</td>
<td>600mA (IOUT), 1.5MHz Synchronous Step-Down DC/DC Converter</td>
<td>V_{IN}: 2.5V to 5.5V, $V_{OUT(MIN)} = 0.6V$, $I_Q = 20\mu A$, $I_{SD} ≤ 1\mu A$, ThinSOT Package</td>
</tr>
<tr>
<td>LTC3407</td>
<td>600mA (IOUT), 1.5MHz Dual Synchronous Step-Down DC/DC Converter</td>
<td>V_{IN}: 2.5V to 5.5V, $V_{OUT(MIN)} = 0.6V$, $I_Q = 40\mu A$, $I_{SD} ≤ 1\mu A$, MS Package</td>
</tr>
<tr>
<td>LTC3411</td>
<td>1.25A (IOUT), 4MHz Synchronous Step-Down DC/DC Converter</td>
<td>V_{IN}: 2.5V to 5.5V, $V_{OUT(MIN)} = 0.8V$, $I_Q = 60\mu A$, $I_{SD} ≤ 1\mu A$, MS Package</td>
</tr>
<tr>
<td>LTC3412</td>
<td>2.5A (IOUT), 4MHz Synchronous Step-Down DC/DC Converter</td>
<td>V_{IN}: 2.5V to 5.5V, $V_{OUT(MIN)} = 0.8V$, $I_Q = 60\mu A$, $I_{SD} ≤ 1\mu A$, TSSOP16E Package</td>
</tr>
<tr>
<td>LTC3421</td>
<td>3A (ISW), 3MHz Synchronous Step-Up DC/DC Converter</td>
<td>V_{IN}: 0.5V to 4.5V, $V_{OUT(MAX)} = 5.25V$, $I_Q = 12\mu A$, $I_{SD} < 1\mu A$, QFN Package</td>
</tr>
<tr>
<td>LTC3425</td>
<td>5A (ISW), 8MHz Multiphase Synchronous Step-Up DC/DC Converter</td>
<td>V_{IN}: 0.5V to 4.5V, $V_{OUT(MAX)} = 5.25V$, $I_Q = 12\mu A$, $I_{SD} < 1\mu A$, QFN Package</td>
</tr>
<tr>
<td>LTC3429</td>
<td>600mA (ISW), 500kHz Synchronous Step-Up DC/DC Converter</td>
<td>V_{IN}: 0.5V to 4.4V, $V_{OUT(MIN)} = 5V$, $I_Q = 20\mu A$, $I_{SD} < 1\mu A$, QFN Package</td>
</tr>
<tr>
<td>LT3436</td>
<td>3A (ISW), 1MHz, 34V Step-Up DC/DC Converter</td>
<td>V_{IN}: 3V to 25V, $V_{OUT(MAX)} = 34V$, $I_Q = 0.9mA$, $I_{SD} < 6\mu A$, TSSOP-16E Package</td>
</tr>
<tr>
<td>LTC3440</td>
<td>600mA (IOUT), 2MHz Synchronous Buck-Boost DC/DC Converter</td>
<td>V_{IN}: 2.5V to 5.5V, $V_{OUT(MIN)} = 5.5V$, $I_Q = 25\mu A$, $I_{SD} < 1\mu A$, MS, DFN Packages</td>
</tr>
<tr>
<td>LTC3441</td>
<td>600mA (IOUT), 2MHz Synchronous Buck-Boost DC/DC Converter</td>
<td>V_{IN}: 2.5V to 5.5V, $V_{OUT(MIN)} = 5.5V$, $I_Q = 25\mu A$, $I_{SD} < 1\mu A$, DFN Package</td>
</tr>
<tr>
<td>LTC3443</td>
<td>1.2A (IOUT), 600kHz Synchronous Buck-Boost DC/DC Converter</td>
<td>V_{IN}: 2.4V to 5.5V, $V_{OUT(MIN)} = 5.25V$, $I_Q = 28\mu A$, $I_{SD} < 1\mu A$, MS Package</td>
</tr>
<tr>
<td>LT3467</td>
<td>1.1A (ISW), 1.3MHz, High Efficiency Step-Up DC/DC Converter</td>
<td>V_{IN}: 2.6V to 16V, $V_{OUT(MAX)} = 40V$, $I_Q = 1.2mA$, $I_{SD} < 1\mu A$, ThinSOT Package</td>
</tr>
</tbody>
</table>